

2023 Mathematics

Advanced Higher - Paper 1

Finalised Marking Instructions

 $\ensuremath{\mathbb{C}}$ Scottish Qualifications Authority 2023

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Marking Instructions for each question

Q	uestior	ר	Generic scheme	Illustrative scheme	Max mark
1.			• ¹ evidence of use of product rule with one term correct ^{1,2}	• ¹ $7 \tan 2x + 7x()$ OR $() \tan 2x + 7x \times 2 \sec^2 2x$	2
			• ² complete differentiation	• ² $7\tan 2x + 14x \sec^2 2x$	
	or a can		te who produces one term idate equates $\frac{dy}{dx}$ to y , •		
Com	Commonly Observed Responses:				

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
2.			• ¹ write template ¹	• $\frac{3x^2 - x - 14}{(x+3)(x-1)^2} = \frac{A}{x+3} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$	3
			• ² form equation and find one constant	• ² $3x^2 - x - 14 = A(x-1)^2 + B(x+3)(x-1) + C(x+3)$ and A = 1 or B = 2 or C = -3	
			• ³ find remaining constants and substitute ²	• ³ $\frac{1}{x+3} + \frac{2}{x-1} - \frac{3}{(x-1)^2}$	

Notes:

- 1. Award 0/3 if an incorrect template has been used. 2. Do not accept + at \bullet^3

Commonly Observed Response:

•
$$\frac{3x^2 - x - 14}{(x+3)(x-1)^2} = \frac{A}{x+3} + \frac{Bx+C}{(x-1)^2}$$

• $\frac{3x^2 - x - 14}{x+3} = A(x-1)^2 + (Bx+C)(x+3)$
and
 $A = 1, B = 2$ and $C = -5$
• $\frac{1}{x+3} + \frac{2}{x-1} - \frac{3}{(x-1)^2}$

Question	Generic scheme	Illustrative scheme	Max mark
3.	 ¹ set up augmented matrix ¹ ² obtain two zeros 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3
Notes:	• ³ write down conclusion with justification ²	• ³ eg $\begin{pmatrix} 1 & -3 & 1 & & -1 \\ 0 & 7 & 1 & & 14 \\ 0 & 0 & 0 & & 2 \end{pmatrix}$ (or statement relating to $14 \neq 16$ at • ²) so inconsistent	

1. Where a candidate equates a 3×3 matrix to a 3×1 matrix, \bullet^1 is not available. Otherwise, accept eg x, y, z, = left in.

2. For •³, candidates who arrive at an augmented matrix which produces a unique solution, or infinitely many solutions, there is no requirement to determine solutions.

Commonly Observed Responses:

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
4.			• ¹ integrate to find " uv -" ^{1,2}	• $\frac{1}{5}x^5 \ln x - \dots$	3
			• ² differentiate to find " $\int u'v dx$ " ³	• ² $\dots \frac{1}{5} \int x^5 \times \frac{1}{x} dx$	
			• ³ complete integration ⁴	• $\frac{1}{5}x^5\ln x - \frac{x^5}{25} + c$	

Notes:

- 1. Where a candidate differentiates or integrates both x^4 and $\ln x$, award 0/3.
- 2. Award 0/3 for candidates who differentiate x^4 and incorrectly integrate $\ln x$. See COR A if $\ln x$ is integrated correctly.
- 3. Do not withhold \bullet^2 for the omission of dx.
- 4. Do not withhold \bullet^3 for the omission of the constant of integration.

Commonly Observed Responses:

COR A

•
$$x^4(x \ln x - x) - ...$$

$$\bullet^2 \dots 4 \int x^3 (x \ln x - x) dx$$

•
$$\frac{1}{5}x^5\ln x - \frac{x^5}{25} + c$$

COR B

Award \bullet^1 :

	Differentiate	Integrate
+	lnx	<i>x</i> ⁴
_	$\frac{1}{x}$	$\frac{1}{5}x^5$

Award \bullet^2 and \bullet^3 as per main method.

Candidates may have different headings, including u and v' for Differentiate and Integrate respectively.

Q	uestion	Generic scheme	Illustrative scheme	Max mark
5.		• ¹ construct auxiliary equation ¹	• $m^2 - 4m - 5 = 0$	9
		• ² find complementary function ^{2,3}	$\bullet^2 y = Ae^{5x} + Be^{-x}$	
		• ³ state particular integral and obtain first and second derivatives of particular	• ³ $y = Cx^2 + Dx + E$ dy • $Cx^2 = Dx + E$	
		integral ⁵	$\frac{dy}{dx} = 2Cx + D$ $\frac{d^2y}{dx^2} = 2C$	
		 ⁴ substitute into LHS of differential equation ⁴ 	• ⁴ $2C - 4(2Cx + D) - 5(Cx^2 + Dx + E)$	
		• ⁵ obtain constants	• $C = -2, D = 1 \text{ and } E = 3$	
		• ⁶ state general solution ^{2,3,6,7}	• $y = Ae^{5x} + Be^{-x} - 2x^2 + x + 3$ stated or implied by • ⁹	
		\bullet^7 differentiate general solution	• ⁷ $\frac{dy}{dx} = 5Ae^{5x} - Be^{-x} - 4x + 1$	
		• ⁸ form simultaneous equations	A + B = -1 $ 5A - B = 13$	
Note		• ⁹ state particular solution ^{2,3}	• $y = 2e^{5x} - 3e^{-x} - 2x^2 + x + 3$	

- 1. \bullet^1 is not available where '=0' has been omitted.
- 2. •² may still be awarded if the complementary function appears only as part of a general solution or the particular solution.
- 3. Do not withhold \bullet^2 for the omission of 'y = ...' provided it appears as part of a general solution or at \bullet^6 or \bullet^9 .
- 4. For the award of \bullet^4 a candidate must substitute an expression with variable coefficients.
- 5. Where a candidate does not introduce a particular integral only \bullet^1 , \bullet^2 , \bullet^7 and \bullet^8 are available.
- 6. Where a candidate includes as part of their general solution
- a. $10x^2 + 11x 23$,
- b. any expression containing constants other than those from the complementary function which have not been evaluated or
- c. an incorrect expression which has not previously been identified as a particular integral,
- •⁶ is unavailable but \bullet^7 may still be available.
- 7. Where a candidate introduces a particular integral after determining values for A and B, leading

to
$$y = \frac{8}{3}e^{5x} - \frac{2}{3}e^{-x} - 2x^2 + x + 3$$
, •⁶ is unavailable.

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
6.	(a)		• ¹ find modulus or argument ¹	• ¹ $r = 2$ or $\theta = \frac{\pi}{3}$, (stated or implied at • ²)	2
			• ² complete polar form ¹	• ² $2\left(\cos\frac{\pi}{3}+i\sin\frac{\pi}{3}\right)$	
Note					

1. Where candidates work in degrees (60°) the degree symbol must appear at least once in part (a) or (b) for \bullet^2 to be awarded.

2 (b) •³ $2^3\left(\cos\frac{3\pi}{3}+i\sin\frac{3\pi}{3}\right)$ •³ apply de Moivre's Theorem •⁴ demonstrate that imaginary part is zero ^{1,2,3,4} • $e^4 eg z^3 = -8$

Notes:

- 1. Accept " $\sin \pi = 0$, therefore z^3 is real", with no evaluation of the real part, for \bullet^4 . 2. Where a candidate loses \bullet^3 as a result of an error, \bullet^4 is still available provided a consistent real number is produced.
- 3. Where an incorrect result is produced in part (a), \bullet^4 is available only if a consistent real number is produced.
- 4. Where a candidate chooses to evaluate z^3 , the value must be consistent with the expression at •³.

Commonly Observed Responses:

Commonly Observed Responses:

COR A

Use of binomial theorem:

 $1+3\sqrt{3}i+9i^2+3\sqrt{3}i^3$ award \bullet^3

COR B

Multiplying out one pair of brackets and resolving i^2 :

$$\left(1+\sqrt{3}i\right)\left(1+2\sqrt{3}i-3\right)$$

award
$$\bullet^3$$

COR C

Multiplying out all three brackets and resolving i^2 without attempting simplification of one pair: $1+\sqrt{3}i+2\sqrt{3}i+(-6)+(-3)$ award •³

Q	uestion	Generic scheme	Illustrative scheme	Max mark
7.	(a)	• ¹ substitute formulae	$ \mathbf{e}_{1}^{1} \frac{n(n+1)(2n+1)}{6} + 3\left(\frac{n(n+1)}{2}\right) $	2
		• ² simplify	• ² $\frac{1}{3}n(n+1)(n+5)$	
Note	s:			
Com	monly Obse	erved Responses:		
	(b)	• ³ substitute 20 and evidence of subtraction	• ³ 1/3(20)(20+1)(20+5)	2
		• ⁴ substitute 10 and evaluate	• ⁴ 2950	
Note	s:	1	1	L
6				
Com	monly Ubse	erved Responses:		

Commonly Observed Responses: (b) \bullet^2 appropriate form for $n^{1/2}$ \bullet^3 factorise and communication Notes: 1. At \bullet^2 , accept eg " k is an integer" but do not 2. Expression for n must be of the form $2k + 1$ 3. At \bullet^3 , accept $4k(k+1)$ for the factorisation 4. Award \bullet^3 if a candidate does not factorise is divisible by 4. 5. Acceptable communication for \bullet^3 includes	Illustrative scheme Max mark
1. The values of a and b must be explicitly 2. Disregard any statement following a suitable 3. Where a candidate chooses eg $a = -2$ and Commonly Observed Responses: (b) • ² appropriate form for $n^{1,}$ • ³ factorise and communication Notes: 1. At • ² , accept eg " k is an integer" but do not 2. Expression for n must be of the form $2k + 3$ 3. At • ³ , accept $4k(k+1)$ for the factorisation 4. Award • ³ if a candidate does not factorise is divisible by 4. 5. Acceptable communication for • ³ includes	and $\bullet^1 a = -2, b = 1$ 4 is not less than 1 or $4 > 1$
 2. Disregard any statement following a suital 3. Where a candidate chooses eg a = -2 and Commonly Observed Responses: (b) •² appropriate form for n¹, •³ factorise and communication for 0 f	
(b) \bullet^2 appropriate form for $n^{1/2}$ \bullet^3 factorise and communication Notes: 1. At \bullet^2 , accept eg " <i>k</i> is an integer" but do n 2. Expression for <i>n</i> must be of the form $2k + 3$ 3. At \bullet^3 , accept $4k(k+1)$ for the factorisation 4. Award \bullet^3 if a candidate does not factorise is divisible by 4. 5. Acceptable communication for \bullet^3 includes	
 Notes: 1. At •², accept eg "<i>k</i> is an integer" but do n 2. Expression for <i>n</i> must be of the form 2<i>k</i> + 3. At •³, accept 4<i>k</i>(<i>k</i>+1) for the factorisation 4. Award •³ if a candidate does not factorise is divisible by 4. 5. Acceptable communication for •³ includes 	
Notes: 1. At \bullet^2 , accept eg " k is an integer" but do n 2. Expression for n must be of the form $2k + 3$ 3. At \bullet^3 , accept $4k(k+1)$ for the factorisation 4. Award \bullet^3 if a candidate does not factorise is divisible by 4. 5. Acceptable communication for \bullet^3 includes	• ² • ² eg $2k+1$, $k \in \mathbb{Z}$ 2
 At •², accept eg "k is an integer" but do n Expression for n must be of the form 2k + At •³, accept 4k(k+1) for the factorisation Award •³ if a candidate does not factorise is divisible by 4. Acceptable communication for •³ includes 	te ^{3,4,5} • $4(k^2 + k)$ and eg which is divisible by 4
 Expression for <i>n</i> must be of the form 2k + At •³, accept 4k(k+1) for the factorisation Award •³ if a candidate does not factorise is divisible by 4. Acceptable communication for •³ includes 	
 Expression for <i>n</i> must be of the form 2k + At •³, accept 4k(k+1) for the factorisation Award •³ if a candidate does not factorise is divisible by 4. Acceptable communication for •³ includes 	of according $k \in \mathbb{N}$, $k \in \mathbb{Z}^+$
 Award •³ if a candidate does not factorise is divisible by 4. Acceptable communication for •³ includes 	m, where m is an odd integer.
	but states that each term or coefficient (or equivalent)
"as required". Simply writing "true" after	"therefore true", " \Rightarrow true ", "so statement is true", factorised expression is insufficient.
Commonly Observed Responses:	

Questio	on	Generic scheme	Illustrative scheme	Max mark
9. (a)		• ¹ state A^{-1}	$\bullet^1 \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right)$	1
		$\frac{\pi}{2} - \sin \frac{\pi}{2}$ $\frac{\pi}{2} \cos \frac{\pi}{2}$ erved Responses:		
(b)	(i)	• ² find $AB^{1,2}$	$\bullet^2 \left(\begin{array}{cc} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{array} \right)$	1
2. All entr	ies mu	idate produces the identity matrix at (ist be evaluated for the award of • ² . erved Responses:	a), • ² is not available.	

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
9.	(b)	(ii)	• ³ find α ^{1,2,3,4}	$\bullet^3 \frac{5\pi}{3}$	1
Note	s:				
3. Ac 4. W or as	early ccept here a nly wh sociat	identi $\alpha = \frac{5}{3}$ a cand ere the ced wi	fied as AB , or is the result of matrix mu $\frac{\pi}{3}$ + 2 $k\pi$, $k \in \mathbb{Z}$, eg $\alpha = -\frac{\pi}{3}$. Note: the state of the state	e on follow-through only if the matrix is altiplication. (b)(i) but a correct angle at (ii), • ³ is available valid strategy, eg adding the angle	ailable
Com	monty	ODSE	i ved kespolises.		
	(c)		• ⁴ find least value of $n^{1,2}$	•4 6	1
ec 2. W •4	here a jual to here a is ava	o 3. a cand ilable		$p)(ii), \bullet^4$ is available only if <i>n</i> is greater t ing successive powers of a matrix from	

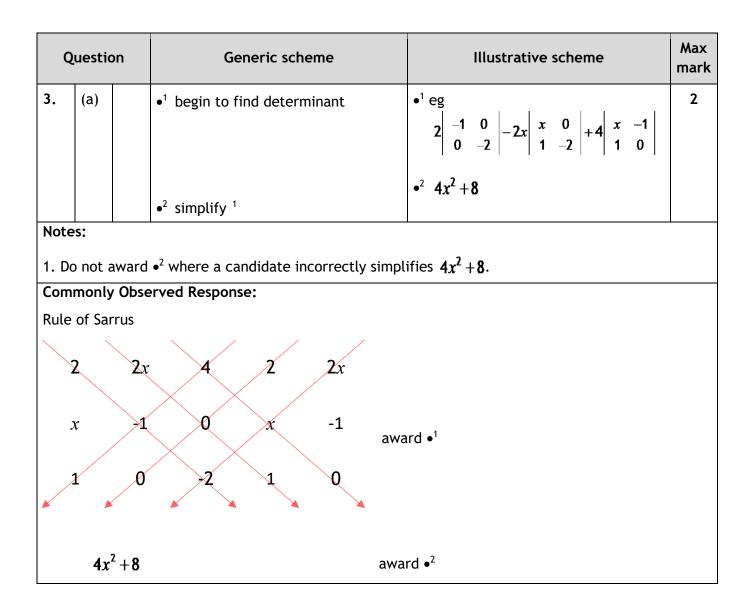
[END OF MARKING INSTRUCTIONS]

2023 Mathematics

Advanced Higher - Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2023


These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Marking Instructions for each question

Q	uestion	Generic scheme	Illustrative scheme	Max mark
1.		• ¹ start differentiation	$\bullet^1 \frac{2}{\sqrt{1-(3x)^2}}$	2
		• ² apply chain rule ¹	• $\frac{2}{\sqrt{1-(3x)^2}}$ • $\frac{6}{\sqrt{1-(3x)^2}}$	
Note		$\frac{6}{\sqrt{1-9x^2}}$ but do not accept $\frac{6}{\sqrt{1-3x^2}}$.	<u>.</u>	
Com	monly Obse	erved Responses:		
2.		• ¹ evidence of recognising $\int \frac{f'(x)}{f(x)} dx^{-1,2}$	• ¹ $k \ln x^3 + 10 , k \in \mathbb{R}$	2
		• ² determine coefficient of $\ln x^3 + 10 ^{1,2,3}$	• ² $\frac{1}{3}\ln x^3+10 +c$	
Note	s:			
te 2 Do	erms. D not withho	wailable only for an expression of the f old $\bullet^{1,2}$ for the omission of modulus sign old \bullet^2 for the omission of the constant of	Form $k \ln x^3 + 10 , k \in \mathbb{R}$, with no furthe s. of integration.	r _x
Com	monly Obse	erved Response:		
Integ	gration by S	ubstitution:		
$\left \frac{1}{3}\right \frac{4}{3}$	du u	award ● ¹		
$\left \frac{1}{3}\ln\right $	$ x^3 + 10 + c$	award \bullet^2		

Ç	Question		Generic scheme	Illustrative scheme	Max mark
3.	(b)		• ³ state conclusion ^{1,2,3,4}	• a^{3} eg $4x^{2} + 8 \neq 0$	1
				A^{-1} always exists	
Note	es:				
			- 8 > 0.		
			old • ³ for omission of "always". as conclusion after $4x^2 + 8 \neq 0$.		
4. \	Where	the a	nswer contains incorrect information (t , \bullet^3 is not available.	before, between or after correct	
Com	monly	v Obse	erved Responses:		
COR	A - Ca	andida	te produces a quadratic expression wh	ich would have a negative discriminant	
$4x^2$	+2x+	8 ≠ 0	, so A^{-1} (always) exists	award \bullet^3	
COR	R				
$4x^2$					
<i>x</i> ≠ 0	, so ,	<i>A</i> ^{−1} do	es not always exist	award \bullet^3	
COR	C				
$4x^2$	+ 8 = 0	0			
<i>x</i> =	(±)√-	- 2 ,			
so A	[^{_1} (alv	vays)	exists	award \bullet^3	
COR	D				
$4x^2$	+ 8 = 0	0			
<i>x</i> =	(±)√-	-2 ,			
so A	(^{_1} (alv	vays)	exists except when $x = (\pm)\sqrt{-2}$	do not award \bullet^3	
COR	Е				
	+8=0	D			
x = ((±)√2	i, so	A^{-1} does not exist for $x = (\pm)\sqrt{2}i$	do not award \bullet^3	

Qu	uestic	on	Generic scheme	Illustrative scheme	Max mark
4.			 ¹ begin differentiation of product term, with one term correct 	• $2xy^2 +$ or $ + 2x^2y\frac{dy}{dx}$	3
			 ² complete differentiation of product term 	• ² $2xy^2 + 2x^2y\frac{dy}{dx}$	
			• ³ complete differentiation and calculate gradient	• $2xy^2 + 2x^2y\frac{dy}{dx} - 2\frac{dy}{dx} = 3\cos 3x$ leading to $-\frac{3}{2}$	
				leading to 2	
Note	s:				
	here t ailabl		ferentiation of the product term produ	ices one term only, \bullet^1 and \bullet^2 are not	
2. At	• ³ , ac	ccept	$\frac{3}{-2}$.		
Comr	monly	0bse	erved Responses:		
	2				

Q	uestio	on	Generic scheme		Illustrative scheme	
5.	(a)		• ¹ state general term ^{1,3}		$\bullet^1 \begin{pmatrix} 8 \\ r \end{pmatrix} (3x)^{8-r} \left(\frac{-2}{x^2}\right)^r$	3
			• ² simplify powers of \mathcal{X} or coefficients ³		• ² $3^{8-r}(-2)^r$ or x^{8-3r}	
			• ³ state simplified general term	2,3,4	$\bullet^{3} \begin{pmatrix} 8 \\ r \end{pmatrix} 3^{8-r} (-2)^{r} x^{8-3r}$	
Note	25					
1. C	andida	ates m	ay also proceed from $\begin{pmatrix} 8 \\ r \end{pmatrix} (3x)^r$	$\left(\frac{-2}{x^2}\right)$	8 <i>−r</i> .	
3. W te 4. W	'here a erm is 'here a	a cand identi a cand	fiable in (b).	● ¹ , ● ²	² and • ³ are not available, unless the ge ner simplification subsequent to the cor	
Com	monly	/ Obse	erved Responses:			
COR	Α			со	RC	
Gene	eral te	erm ha	s not been isolated	Binomial expression has been equated to the		
$\sum_{r=0}^{8}$	$\binom{8}{r}$	$Bx)^{8-r}$	$\left(\frac{-2}{x^2}\right)^r$		eral term $x - \frac{2}{x^2} \bigg ^8 = {\binom{8}{r}} (3x)^{8-r} \left(\frac{-2}{x^2}\right)^r$	
$=\sum_{r=0}^{8}$	$\binom{8}{r}$	$\left(-\frac{8}{3}\right)^{8-r}$	$(-2)^r x^{8-3r}$		regard the incorrect use of the equals stard •1.	ign.
Do n	ot awa	ard ∙¹.	Award \bullet^2 and \bullet^3 .	CO	R D	
COR B					ative sign omitted	
Gene	eral te	erm ha	s been isolated	$\left \left(\begin{array}{c} 8 \\ r \end{array} \right) \right $	$\left \left(3x \right)^{8-r} \left(\frac{2}{x^2} \right)^r \right $	
$\sum_{r=0}^{8}$	$\binom{8}{r}$ (3	$(x)^{8-r} \left($	$\left(\frac{-2}{x^2}\right)^r$		not award \bullet^1 , but \bullet^2 and \bullet^3 are still avai	lable.
$= \begin{pmatrix} 8 \\ \mu \end{pmatrix}$)(3) ⁸⁻	- ^r (2)	x^{8-3r} –	COI Bra	R E ckets omitted around —2	
	/ 			(0)		

$$\binom{8}{r} (3)^{8-r} - 2^r x^{8-3r}$$

Do not award \bullet^3 .

Disregard the incorrect use of the final equals sign. Award $\bullet^1, \, \bullet^2$ and $\bullet^3.$

Question		Generic sch	eme Illustrative scheme	Max mark
5.	(b)	• ⁴ determine value of	r^2 \bullet^4 3	2
		• ⁵ find coefficient ^{1,2}	• ⁵ -108864	
2. W	/here a omplete		x expansion, • ⁴ may be awarded only if the expansion is as the required term (in either direction). The require	
Bind	omial ex	Observed Response: Spansion 992 <i>x</i> ⁵ + 81648 <i>x</i> ² –108864 <i>x</i>	$x^{-1} + 90720x^{-4} - 48384x^{-7} + 16128x^{-10} - 3072x^{-13} + 2$	56 <i>x</i> ⁻¹⁶

Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)	• ¹ obtain <i>d</i> ¹	• ¹ 19	1
Note	es:		•	1
1. F	or the av	vard of \bullet^1 , 19 must be clearly identified as	the gcd in (a) or implied by its use in (b).
Com	monly C	Observed Responses:		
	(b)	2	$19 = 304 - 3 \times 95$	2
		 express gcd in terms of 304 and 399 	$= 304 - 3 \times (399 - 1 \times 304)$	
		$ullet^3$ find values of a and b^{-1}	• $a = 4, b = -7$	
Note	es:		•	1
•	accept	ere candidates do not explicitly commute $19 = 4 \times 703 + (-7) \times 399$ and $19 = 703 \times 4 \times 39$	₩ ()	
		accept $19 = 4 \times 703 - 7 \times 399$ or $19 = 4 \times 703$	03-377×1	
	(c)	$ullet^4$ find values of p and $q^{1,2}$	•4 $p = 16, q = -28$	1
Note	es:			
1. D	o not ac	cept $a = 16, b = 28$.		
2. A	t ∙⁴, whe	ere candidates do not explicitly communica	ate \boldsymbol{p} and q :	
•	accept	76 = 16 703 (+ 28) 399 and $76 = 703$ 16 3	99 (×28)	
•		accept $76 = 16 \times 703 - 28 \times 399$ 76 = 16 70 ld on the same grounds.	03- 399 28 unless • ³ has already been	
Com	monly C	Observed Responses:		
	-			

Q	uestio	on	Generic scheme	Illustrative scheme	Max mark
7.	(a)		• ¹ find integrating factor ¹	$\bullet^1 e^{-2x}$	4
			\bullet^2 write as integral equation ^{2,3}	• $e^{-2x}y = 6\int e^{5x}e^{-2x}dx$	
			• ³ integrate right-hand side ^{4,5}	• ³ $6 \times \frac{1}{3}e^{3x} + c$	
			• ⁴ find particular solution ^{5,6}	• $y = 2e^{5x} - 3e^{2x}$	
Note	s:				
2. Do 3. W	o not v here a	vithho a cand	JUN	ide do not withhold $ullet^2$ provided the can	didate
	-		s evidence that they have integrated w	-	
			lidate integrates $6e^{5\mathbf{x}}$, $\mathbf{\bullet}^3$ is not availab te who omits the constant of integratic		
			-		
6. Ac	cept	<i>y</i> = –	$\frac{e^{3x}-3}{e^{-2x}} \text{ at } \bullet^4.$		
Comi	monly	Obse	erved Response:		
Cand	idate	treats	s equation as linear differential equation	n:	
● ¹ Wi	rite au	ıxiliar	y equation and obtain complementary	function: $m-2=0$ and $y=Ae^{2x}$	
•² pa	articul	ar int	egral and derivative:	$y = Be^{5x}$ and $\frac{dy}{dx} = 5Be^{5x}$	
● ³ su	bstitu	te Pl ⁻	into differential equation and determir		2
● ⁴ fir	nd par	ticula	r solution:	$y=2e^{5x}-3e^{2x}$	
	(b)		• ⁵ find third derivative ^{1,2}	• $\frac{d^3y}{dx^3} = 250e^{5x} 24e^{2x}$	2
			• ⁶ find $k^{2,3}$	• ⁶ $k = 36$	
Note	s:				L
av 2. Wi co <i>y</i>	vailabl here a ompler	e only a cand menta	where this is clearly stated. Idate adopts an approach using an auxi- ry function of the form $y = A + Bx + Ce$	e^{5x} term need not be considered, \bullet^5 is iliary equation, \bullet^5 is available for a gen b^{5x} AND a particular integral of the form the the value of k from their coefficient	eral 1
3. Ac	cept	$36e^{2x}$	for the award of \bullet^6 .		
Com	monly	Obse	rved Responses:		

C	Questio	on	Generic scheme	Illustrative scheme	Max mark
8.	(a)	(i)	• ¹ find the common ratio	•1 3	1
Not	es:				
Con	nmonly	y Obse	erved Responses:		
		(ii)	• ² find first term	$\bullet^2 \frac{1}{3}$	1
Not	es:		L		
Соп	monly	y Obse	erved Responses:		
	(b)		• ³ find S_n and S_{2n}^{1}	• $S_n = \frac{\frac{1}{3}(1-3^n)}{1-3}$ and $S_{2n} = \frac{\frac{1}{3}(1-3^{2n})}{1-3}$	2
			\bullet^4 obtain expression ²	• $\frac{(1-3^n)(1+3^n)}{1-3^n}$ leading to $1+3^n$	
Not	es:				
b 2. F	e usec or the	l wher award	n substituting, unless they separately c	e candidate has completed a difference	
	-	-	erved Response:		
	candic r ²ⁿ r ⁿ or		vho deal with general expressions: - <u>1</u> award • ³		

Question		on	Generic scheme			Illustrative scheme	
9.			• ¹ evide	nce of valid method ¹	•1	$572 = 9 \times 63 + 5$ $63 = 9 \times 7 + 0$ $7 = 9 \times 0 + 7$	2
			•² expre	ess in base nine ^{2,3}	• ²	7059	
2.	For the For the	award		, the final expression least three digits must b on of base 9.			
Cor	nmonly	v Obser	ved Res	ponses:			
-	2 ÷ 9 = 6 63 ÷ 9 = 7 ÷ 9 =	7 r 0 0 r 7	awa	ard \bullet^1 and \bullet^2			
CO 572	R B 2 = 9 × 6	3+5					
	3 = 9 × 3 leading		awa	ard \bullet^1 and \bullet^2			
CO 572	R C 2=9×6	3+5					
	3 = 9 × 3 leading		awa	ard \bullet^1 but not \bullet^2			
CO	R D						
	9 ²	9 ¹	9 º				
	81	9	1				

Award \bullet^1 for all entries in row 2 and the '7' in row 3.

Q	uestion	Generic scheme	Illustrative scheme	Max mark	
10.		 take logarithms on both sides and apply rule¹ 	• $\ln y = 5x^2 \ln x$	5	
		• ² differentiate $\ln y$	$\bullet^2 \frac{1}{y} \frac{dy}{dx}$		
		• ³ evidence of product rule with one term correct ^{2,3}	• $10x \ln x + \dots$ or $\dots + 5x^2 \cdot \frac{1}{x}$		
		• ⁴ complete differentiation ^{2,3}	• ⁴ $10x \ln x + 5x^2 \cdot \frac{1}{x}$		
		• ⁵ write $\frac{dy}{dx}$ in terms of χ ^{1,3,4}	• ⁵ $\frac{dy}{dx} = x^{5x^2} \left(10x \ln x + 5x\right)$		
Note	s:				
		as an alternative to ' \ln ' provided candies who do use a base other than e , only	date does not indicate a base other tha \bullet^1 and \bullet^5 are available.	an e.	
		es who do not attempt to use the produ			
3. Ac	cept '5 x'in	istead of $5x^2 \cdot \frac{1}{x}$ for \bullet^3 and \bullet^4 . However	ver, do not accept $5x^2 \cdot \frac{1}{x}$ for \bullet^5 .		
		able for candidates who subsequently $(+5x)$ becomes $x^{6x^2}(10\ln x + 5)$.	produce an incorrect statement - eg		
Com	monly Obse	erved Responses:			
COR	Α				
		who write $y = e^{\ln x^{5x^2}}$, marks may be aw	varded as follows.		
● ¹ WI	rite in the f	orm $y = e^{\ln x^{5x^2}}$.			
● ^{2,3} ap	oply chain r	ule $\frac{dy}{dx} = e^{5x^2 \ln x} \cdot \frac{d}{dx} (5x^2 \ln x)$			
● ⁴ us	• ⁴ use product rule with one term correct $10x \ln x + \dots$ or $\dots + 5x^2 \cdot \frac{1}{x}$				
● ⁵ co	mplete diff	Therentiation $\frac{dy}{dx} = x^{5x^2} \left(10x \ln x + 5x\right)$ o	$r \frac{dy}{dx} = e^{5x^2 \ln x} \left(10x \ln x + 5x \right)$		
	andidates v	who write $y = e^{5x^2} \ln x$ do not award \bullet^1 , plication of the product rule.	\bullet^2 or \bullet^5 . However, \bullet^3 and \bullet^4 are still av	ailable	

Q	Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)		 ¹ determine the relationship between r and h 	•1 $r = \frac{90h}{150}$ (or equivalent) leading to $V = \frac{3\pi h^3}{25}$	1
Note	es:			I	
Com	monly	v Obse	erved Responses:		
	(b)		• ² find $\frac{dV}{dh}^2$	$\bullet^2 \frac{dV}{dh} = \frac{9\pi h^2}{25}$	5
			• ³ form relationship ³	• ³ eg $\frac{dV}{dt} = \frac{dV}{dh}\frac{dh}{dt}$ stated or implied at • ⁵	
			• ⁴ interpret rate of change of V in cm^3s^{-1}	$\bullet^4 \frac{dV}{dt} = 10000$	
			• ⁵ form expression for $\frac{dh}{dt}$ in terms of h^{5}	$\bullet^5 \frac{dh}{dt} = \frac{25 \times 10000}{9\pi h^2}$	
			• ⁶ evaluate $\frac{dh}{dt}$ ^{1,4,6}	• ⁶ $\frac{16}{9\pi}$ cms ⁻¹	
Note				•	
ar 2. If	nd use a deri	d con ivative	ative notation is used for V , h and t , \bullet^6 sistently. e is equated to the original expression, any correct form of the chain rule whic	-	fined
			swer rounded to at least 2 significant f		
5. Fo	or the	awaro	d of \bullet^5 the expression need not be simplified for \bullet^6 .		
Com	monly	/ Obse	erved Response:		
<u>d</u>	$\frac{V}{dt} = 1$		ate does not convert litres to cm ³ . do not award • ⁴		
• ⁵ $\frac{a}{a}$	_ = -	5×10 $9\pi h^2$			

•⁶
$$\frac{2}{1125\pi}$$
 cms⁻¹ or 5.7 × 10⁻⁴ cms⁻¹

Q	uestion	Generic scheme	Illustrative scheme	Max mark
12.		• ¹ show true for $n = 1$ ¹	• ¹ (LHS =)2 ¹⁻¹ 1 × 1: (RHS =)2 ¹ (1 1)-1 +1 so result is true when $n = 1$	5
		• ² assume statement true for $n = k$ AND consider whether statement true for $n = k + 1^{2,5}$	• ² suitable statement AND $\sum_{r=1}^{k} 2^{r-1}r = 2^{k}(k-1)+1$ AND $\sum_{r=1}^{k+1} 2^{r-1}r = \cdots$	
		• ³ state sum to $k + 1$ terms using inductive hypothesis ³	• ${}^{3} 2^{k}(k-1) + 1 + (k+1)2^{k+1-1}$ or $2^{k}(k-1) + 1 + (k+1)2^{k}$	
		 ⁴ take out common factor of 2^k and simplify ⁴ 	• $4^{k} 2^{k} \cdot 2^{k} + 1$	
		• ⁵ express sum explicitly in terms of $(k + 1)$ or achieve stated aim/goal AND communicate ^{5,6,7}	• ⁵ $2^{(k+1)}(k+1-1)+1$ AND	
			If true for $n = k$ then true for n = k + 1. Also true for $n = 1therefore, by induction,true for all positive integers n$	

Question		Generic scheme	Illustrative scheme	Max mark			
12.	(continued	1)					
Note	Notes:						
	1. "RHS = 1, LHS = 1" and/or "True for $n = 1$ " are insufficient for the award of \bullet^1 . Where a candidate does not independently evaluate LHS and RHS, \bullet^1 may still be awarded.						
	,	ent phrases for $n = k$ contain: r'; 'Suppose true for'; 'Assume true	ue for'.				
		ient phrases for $n = k$ contain: n = k', 'assume $n = k'$, 'assume $n = k$	k is true' and 'True for $n = k$ '.				
Α	sufficient p	phrase for the award of $ullet^2$ may appear	at • ⁵ .				
F	or • ² , accept	::					
a	ssume true 1	for $n = k$ AND $\sum_{r=1}^{k} 2^{r-1}r = 2^{k}(k-1)+1$ A	ND "Aim/goal: $\sum_{r=1}^{k+1} 2^{r-1} r = 2^{k+1} (k+1-1)$	+1"			
		ptable phrases for $n = k + 1$ contain: true for $n = k + 1$ ", "true for $n = k + 1$ ",					
	$\sum_{r=1}^{k+1} 2^{r-1} r$	$= 2^{k+1}(k+1-1)+1$ " (with no reference	to aim/goal and no further processing)	•			
		be awarded directly after \bullet^2 , exercise lass been provided, eg the handling of sig		ation			
4. •	^₄ is unavaila	ble to candidates who arrive at $2^k \cdot 2k +$	1 without algebraic justification.				
5.	⁵ is unavaila	ble to candidates who have not been av	warded \bullet^4 .				
6. F	5. Full marks are available to candidates who state an aim/goal earlier in the proof and who subsequently achieve the stated aim/goal, provided $2^{k+1}(k+1-1)+1$ appears at some point.						
7. F	ollowing the	e required algebra and statement of the	inductive hypothesis, the minimal				
	cceptable re " or equival	esponse for \bullet^{5} is: "Then true for $n = k + ent$.	1, but since true for $n = 1$, then true for	or all			
Com	monly Obse	rved Responses:					

Question		Generic scheme	Illustrative scheme	Max mark			
13.		• ¹ write as integral equation ¹	• $\int \frac{1}{P} dP = \int \frac{1 \cdot 4}{m - 220} dm$	6			
		\bullet^2 integrate P expression	• ² $\ln P$				
		• ³ integrate m expression ²	• ³ 1.4 ln (m - 220) + c				
		• ⁴ substitute values following integration ²	• ⁴ $\ln 1079 = 1.4 \ln (807 \ 220) - c$				
		• ⁵ evaluate constant of integration ^{2,4}	• ⁵ –1·94				
		• ⁶ write expression in terms of $m^{2,3,4}$	• ⁶ $P = 0.14(m-220)^{1.4}$				
Notes:							
1. Do not award \bullet^1 where $\int \dots dP$ and $\int \dots dm$ do not appear.							
 For candidates who omit the constant of integration, ●³ may be awarded but ●⁴, ●⁵ and ●⁶ are unavailable. 							
3. For \bullet^6 accept $P = e^{14 \ln (m-220)-194}$ or equivalent.							

4. Disregard numerical errors due to truncation or premature rounding.

Question	Generic schem	e	Illustrative sc	heme	Max mark
13. (continued)					
Commonly Obse	erved Responses:				
Alternative Corr	rect Solutions	Incorrect In	tegration of LHS		
• ⁴ $P = e^{14 \ln(m-220)}$ • ⁵ 1079 = $e^{14 \ln(80)}$ • ⁶ $P = 0.14(m-20)$ COR B • ¹ $\int \frac{1}{1.4P} dP = \frac{1}{2}$	^{77–220})e ^c - 220) ^{1.4}	$1.4 \ln P$ • ³ ln(m-2)	$9 = \ln(807 - 220) + c$	do not award	• ²
$ \begin{array}{r} \bullet^{2} \frac{1}{1.4} \ln P \\ \bullet^{3} \ln(m - 220) + \\ \bullet^{4} \frac{1}{1 \cdot 4} \ln 1079 = 1 \\ \bullet^{5} -1 \cdot 39 \\ \bullet^{6} P = 0 \cdot 14 \left(m - 120 \right) \\ \bullet^{6} P = 0 \cdot 14 \left(m - 120 \right) \\ \bullet^{1} \int \frac{1}{1 \cdot 4P} dP = 1 \\ \end{array} $	n(807 - 220) + c - 220) ^{1.4}	$1.4\ln 1.4$ • ³ $\ln(m-2)$	20) + c $21079 = \ln(807 - 220)$	do not award + <i>c</i>	• ²
$e^{2} \frac{1}{1.4} \ln 1.4P$ $e^{3} \ln(m-220) + \frac{1}{1.4} \ln 1.4P$	+c 79) = $\ln(807 - 220) + c$		$(179) = \ln(807 - 220) + c$	do not award do not award (eased)	

Question	Generic scheme		Illustrative scheme		Max mark
13. (continued)					
		Incorrect In	tegration of LHS		
		COR G			
		$\left \bullet^1 \int \frac{1}{1 \cdot 4P} dt \right $	$P=\int\frac{1}{m-220}dm$		
		$\ln 1.4P$ • ³ $\ln(m-22)$		o not award	• ²
		• ³ $\ln(m-2)$ $P = \frac{(m-2)}{m}$	1.4	o not award	•4
		• ⁵ 1079 = $\frac{(8)}{}$ • ⁶ $P = 1.84($		eased)	

Question		Generic scheme		Illustrative sc	heme	Max mark
14.		• ¹ substitute, expand and a $i^2 = -1^{1}$	apply	• ¹ a^2-b^2+2abi		4
		• ² equate real and imagina	ry parts	• ² $a^2 - b^2 = 8$ and $2ab^2 = 8$	=6	
		• ³ substitute for b or a^2		• ³ eg $a^2 - \frac{9}{a^2} = 8$		
		• ⁴ rearrange into quartic in form and solve ^{2,3,4}	n standard	• $a^4 - 8a^2 - 9 = 0$ and	<i>a</i> =3, <i>b</i> =1	
Note	S:					
2. Fo tr 3. Fo	 The imaginary part need not be simplified for the award of •¹. For the award of •³ and •⁴, there must be suitable algebraic justification. Answers obtained by trial and error are not acceptable. For the award of •⁴, <i>a</i> and <i>b</i> must both be positive. Provided appropriate algebraic justification is present, •⁴ may be awarded for w=3+i. 					
Com	monly Obse	rved Responses:				
Cand	idates who	use de Moivre's theorem:				
●¹ de	• ¹ determine modulus or argument $ w^2 = 10$ or $\theta = 36.9^{\circ}(0.64 \text{ radians})$					
• ² express in polar form 1			10(cos 36.9°	$(i\sin 36.9^\circ)$ or $10(\cos 0)$	$.64 + i \sin 0.64$	
•³ a	• ³ apply de Moivre's theorem $\sqrt{10}\left(\cos\frac{36.9}{2}^\circ + i\sin\frac{36.9}{2}^\circ\right)$ or $\sqrt{10}\left(\cos\frac{0.64}{2} + i\sin\frac{0.64}{2}\right)$					
(Do not award \bullet^3 if the argument of w^2 is 0 or of the form $2k\pi$ or $360k^\circ$, $k \in \mathbb{Z}$.)						
● ⁴ de	• ⁴ determine \boldsymbol{a} and \boldsymbol{b}			or <i>a</i> =3, <i>b</i> =0.99		

Q	Question		Generic scheme	Illustrative scheme	Max mark			
15.	(a)		 evidence of use of quotient rule with denominator and one term of numerator correct ¹ 	• ¹ $\frac{1+(x+1)^4}{(1+(x+1)^4)^2}$ OR	3			
				$\frac{\dots - (x+1)4(x+1)^3}{(1+(x+1)^4)^2}$ • ² $\frac{1+(x+1)^4 - (x+1)4(x+1)^3}{(1+(x+1)^4)^2}$				
			• ² complete differentiation	• ² $\frac{1+(x+1)^4-(x+1)4(x+1)^3}{(1+(x+1)^4)^2}$				
			• ³ find required terms	• 3 1+ $\frac{1}{2}x-\frac{1}{4}x^{2}$				
Note	s:							
1. W	here a	a cand	lidate arrives at $1 + \frac{1}{2}x - \frac{1}{4}x^2$ without alg	gebraic differentiation, award \bullet^3 only.				
Com	monly	/ Obse	erved Responses:					
,	native	e Meth ⊦1)⁴).	nod (Product Rule) 					
``	• ² +(x+1)(-1)(1+(x+1) ⁴) ⁻² 4(x+1) ³							
Cand	COR B Candidates who use logarithmic differentiation							
•1 lr	• $\ln(f'(x)) = \ln(x+1) - \ln(1+(x+1)^4)$							
•² —	• $\ln(f'(x)) = \ln(x+1) - \ln(1+(x+1)^4)$ • $\frac{1}{f'(x)}f''(x) = \frac{1}{x+1} - \frac{4(x+1)^3}{1+(x+1)^4}$ (candidates may be less precise on LHS)							

Question		on	Generic scheme	Generic scheme Illustrative scheme		Max mark		
15.	(b)		• ⁴ find $\frac{du}{dx}$	•4	$\frac{du}{dx}=2(x+1)$	3		
			• ⁵ rewrite integral in terms of u^{-1}	•5	$\frac{1}{2}\int \frac{du}{1+u^2}$			
			$ullet^6$ integrate and substitute for u^2	•6	$\frac{1}{2}\tan^{-1}(x+1)^2 + c$			
Note	s:	1						
	 1. du/dx may be implied at •⁵. 2. Do not withhold •⁶ for the omission of the constant of integration. 							
			erved Responses:	/1 11				
Com	monty	0036	nved kesponses.					
	(c)		• ⁷ interpret Maclaurin expansion ¹	•7	f(0) = 1	2		
			• ⁸ obtain $f(x)^2$	• ⁸	f(0) = 1 $\frac{1}{2} \tan^{-1} (x+1)^2 + 1 - \frac{\pi}{8}$			
Note	Notes:							
1. At • ⁷ accept $\frac{1}{2} \tan^{-1} (0+1)^2 + c = 1$.								
2. Award \bullet^8 for $c = 1 - \frac{\pi}{8}$ provided candidate has previously written $\frac{1}{2} \tan^{-1}(x+1)^2 + c$.								
Com	monly	/ Obse	erved Responses:					

[END OF MARKING INSTRUCTIONS]